

High Performance Aluminized Gap-based Propellants IM Results

Caroline NGUYEN, Fabienne MORIN, Fabrice HIERNARD, Yves GUENGANT

SNPE Matériaux Energétiques 91710 Vert-le-Petit, FRANCE

Insensitive Munitions and Energetic Materials, Munich, October 11-14, 2010

□ Aluminized GAP-based solid propellant

□ Vulnerability requirements and results

Conclusions

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

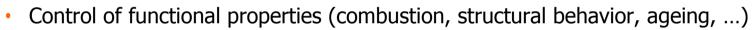
□ Aluminized GAP-based solid propellant

- Formulation
- Azalane[®] characteristics (performance, mechanics, safety)

Vulnerability requirements and results

Conclusions

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010


Propulsion Needs for Defense Applications

□ Global performance

- Performance (Isp, IFT)
- Energy management

Operation

- Safety, IM
- Reliability

Requirements

Costs

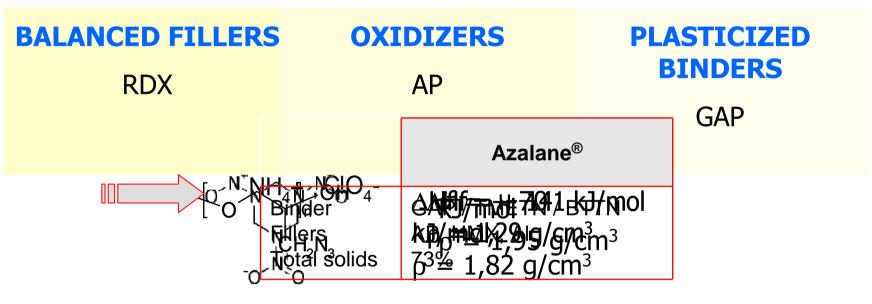
4/17

Environmental issues

SNPE answer :

Alumized GAP-based

propellants

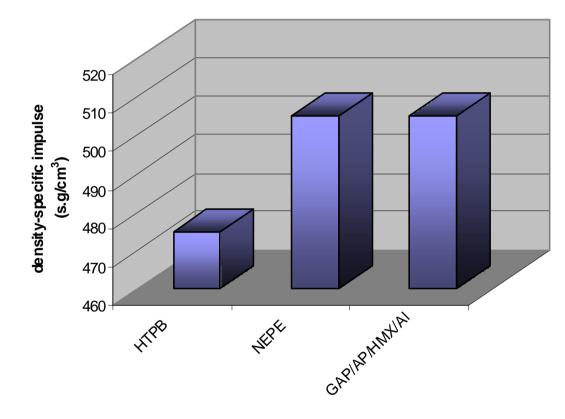

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

5/17

Formulation

□ Formulation studies, with energetic molecules / mature ingredients
→ Aluminized GAP-based compositions

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010



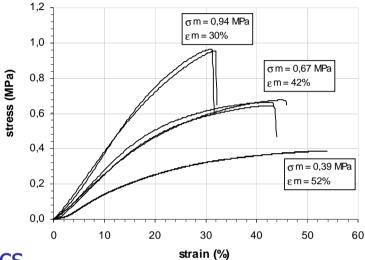
6/17

Azalane[®] characteristics

□ Performances

- Similar performance compared to NEPE based compositions
- Increased performance compared to HTPB based compositions

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010



Azalane[®] characteristics

Mechanical properties

 Adjustment and optimization of Azalane[®] mechanical properties is possible

Pyrotechnic safety characteristics

No particular sensitivity is induced by GAP

Tests	Results
Friction sensitivity UN 3b)i)	76 N
Impact sensitivity UN 3a)ii)	22 J
Self ignition STANAG 4491 annex B2	172°C

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

□ Aluminized GAP-based solid propellant

Ulnerability requirements and results

- Safety characteristics in detonics
- Slow heating
- ES sensitivity
- Bullet impact tests

Conclusions

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

8/17

9/17

Safety characteristics in Detonics

Azalane[®] contains energetic binder, plasticizer and nitramine, thus further studies are needed to ensure safety

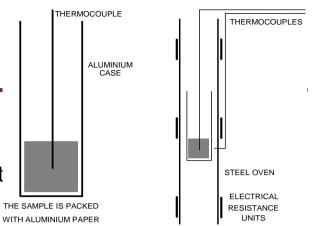
□ Large Scale Gap Test (LSGT), according to STANAG 4488 annex B

- Similar sensitivity compared "good" insensitive explosives (I-PBXN109)
- Reduced sensitivity compared NEPE based compositions

	Azalane®	
Simplified composition	GAP/BTTN/TMETN AP HMX Aluminum	
LSGT Result (Nb of acetate cards)	150	
Pressure in acetate (kbar)	48	

Hazard classification 1.3c (manufacturing and storage)

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010


Response to slow Heating

□ Thermal threat studied through :

- unconfined thermo-ignition critical temperature test
- small scale slow heating tests
- \varnothing 50 mm & length 50 mm samples

□ Azalane[®] propellant behavior

Moderate reaction is observed

□ Classical HTPB propellant behavior

 Violent reaction is observed (oven / vessel explosion)

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

10/17

Response to slow Heating / ES sensitivity

ES characteristics

- Many studies related to ES phenomena during the 80's & 90's, applied to HTPB based propellants
- Azalane[®] behavior ≠ HTPB based propellant behavior when submitted to ES discharges

Test	HTPB / AP / AI based propellant *	AZALANE [®] propellant
Volumic electrostatic resistivity (Ω.m)	10 ⁺¹⁰	10 ⁺⁰⁵
Intrinsic characteristic	insulating	conductive
Large scale test STANAG 4490 annex B	sensitive to ES discharges	no-sensitive to ES discharges

ES accident can not occur with Azalane[®]

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

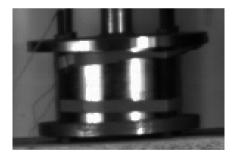
This document is the property of SNPE Matériaux Energétiques and it may not be reproduced and communicated to third parties without its written authorization

11/17

Bullet Impact Demonstration

Experiment description

- SNPE mock up
- Length 100 mm Propellant diameter Ø152 mm


Cylindrical central bore \emptyset 50 mm

- 0.5" armour-piercing bullet 12.7 mm bullet, velocity = 850 m/s
- Monitoring techniques (high speed camera, overpressure measurement)

□ Bullet impact test #1, in <u>closed</u> vessel, fired @ 850m/s

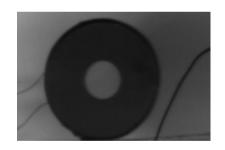
according to STANAG 4439 / AOP39

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

Type V reaction,

- Propellant combustion followed by mock-up pneumatic explosion
- Case and unburnt residual propellant is recovered
- No metallic fragment is generated
- No blast overpressure is measured

12/17


Bullet Impact Demonstration

Experiment description

- SNPE mock up
- Length 100 mm Propellant diameter 152 mm
- Cylindrical central bore \emptyset 50 mm

- 0.5" armour-piercing bullet 12.7 mm bullet, velocity = 850 m/s
- Monitoring techniques (high speed camera, overpressure measurement)

□ Bullet impact test #2, in <u>opened</u> vessel, fired @ 850m/s

- Propellant combustion
- Precision on ignition scenario : friction of the bullet on the propellant
- No metallic fragment is generated
- No blast overpressure is measured

13/17

Azalane[®] exhibits a satisfactory behaviour to BI tests, improved w.r. to NEPE and comparable with that of HTPB

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

□ Aluminized GAP-based solid propellant

□ Vulnerability requirements and results

Conclusions

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

14/17

Conclusions

- High energetic performance and IM behavior are not intrinsically incompatible,
- Azalane[®] solid propellant exhibits very satisfactory behavior to safety and vulnerability test at small scale assessment (Slow heating threats, ES phenomena, Bullet impact, Mechanical shocks),
- Compared to HTPB propellants, Azalane[®] IM characteristics are equivalent or even better,
- New rocket rocket propellants are ready for coming applications : motors filled with Azalane[®] propellant with attractive IM signature can be expected, in the future.

15/17

and communicated to third parties without its written authorization

Acknowledgements

This work was funded by French MoD (DGA)

Thank you for your attention Any questions are welcome

Insensitive Munitions and Energetic Materials – Munich – October 11-14, 2010

16/17